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Abstract. After a brief review of results in few-nucleon physics based on conventional nuclear forces the
steps towards nuclear forces in the effective field theory approach constrained by chiral symmetry are
indicated. Several low-energy constants are adjusted to nucleon-nucleon phase shift values and in the
three-nucleon system to the triton binding energy and the doublet nd scattering length. Applications
based on NNLO nuclear forces to the three- and four-nucleon systems are very promissing. Finally, a new
regularization scheme is described which leads to a nice convergence of the chiral expansion.

PACS. 21.30.Cb Nuclear forces in vacuum – 21.45.+v Few-body systems

1 Introduction

In recent years so called high precision NN forces have
been developed [1]. They are constructed with the aim to
describe the rich set of NN data up to the pion threshold
very well. These forces typically depend on about 45 fit
parameters and are not founded on a systematic theoret-
ical approach. The accurate description is considered to
be a prerequisite for the use of those forces in few-nucleon
sytems with A > 2. Over the years accurate methods have
also been developed to solve the Schroedinger equation for
few-nucleon bound states [2]. The result is that NN forces
alone underbind light nuclei as documented in Table 1.
In view of the composite nature of nucleons and a rela-
tively low lying excited state of the nucleon, the delta, a
three-nucleon force caused by an intermediate delta exci-
tation appears as a natural candidate to fill that gap of
underbinding.

Thus three-nucleon force models have been developed
around that picture of an intermediate delta excitation
generated by two-pion exchanges [6]. Adding them to the
NN forces and adjusting their parameters one can eas-
ily achieve the correct binding energy of 3H (3He), the
first nuclei, where 3N forces are acting. Thus an enriched
Hamiltonian consisting of NN and 3N forces can now be
applied to predict 3N scattering observables, the binding
energy of light nuclei etc. Table 2 displays the prediction
[7] for the α particle binding energy using different NN
and 3N force combinations. This looks promising.

Also promising are predictions for some 3N scattering
observables shown in Figs. 1,2. On the other hand for cer-

Table 1. Theoretical ground state binding energies for various
light nuclei and various NN forces in comparison to experiment.
The results for A = 6 and 8 are from [5]

Nijm CD Bonn AV18 Exp
3H −7.74 −8.01 −7.6 −8.48
4He −24.98 −26.26 −24.1 −28.30
6He −23.9 −29.3
6Li −26.9 −32.0
8Li −31.8 −41.3
8Be −45.6 −56.5

Table 2. Theoretical predictions for the α-particle binding
energy for various NN and 3N force contributions

2N+3N forces 3H 4He
CD Bonn + TM [6] −8.48 −28.4
AV18 + TM [6] −8.45 −28.36
AV18 + URB [6] −8.48 −28.50
Exp −8.48 −28.30

tain other spin observables the addition of these 3N forces
does not improve the description, as shown in Fig. 3. This
reveals that the spin and momentum dependencies of 3N
forces are yet by far not understood. Certainly the variety
of meson exchange processes contributing to the NN forces
should also show up in 3N forces, which points to a rich set
of 3N forces to be explored. Recently steps in that direc-
tion have been undertaken [9] by considering three-pion
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Fig. 1. Differential cross section for elastic nd scattering at Elab = 65 und 135 MeV. The light shaded band refers to NN force
predictions only, the dark shaded band includes 3N forces. Data from [3], [4]
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Fig. 2. Deuteron vector analysing power Ay at Elab = 135
MeV. The solid (dashed) lines refer to AV18 + URBANA IX
(CD Bonn + TM’) nuclear forces. Data from [8]. For remaining
notation see Fig. 1
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Fig. 3. Tensor analysing power Ay at Elab = 135 MeV. For
notation see Fig. 2

exchanges with intermediate deltas, which improve signif-
icantly the description of low lying states up to A = 10,
see [10]. Nevertheless what has been and is still missing in
all that work is a systematic path towards nuclear forces.
This appears to change now with the effective field theory
approach constrained by chiral symmetry.

2 Effective field theory approach

It is well known that the QCD Lagrangian for massless
up and down quarks is invariant under global SU(2)L ×

SU(2)R transformations in the flavour space. Further
there is ample evidence that this symmetry is sponta-
neously broken down to the isospin group SU(2)V and as
consequence three massless Goldstone bosons exist, which
can be identified with massless pions. The actual nonvan-
ishing masses of the up and down quarks introduce an ex-
plicit symmetry breaking which leads to the nonvanishing
pion masses. That spontaneously and explicitely broken
symmetry governs also the interactions between pion and
nucleon fields in an effective field theory set up. There it
has to appear as a nonlinear realisation of the chiral group
as worked out in [11]. In that effective field theory frame-
work constrained by chiral symmetry the ordering scheme
for the most general Lagrangian appears naturally in a low
momentum regime, where the momenta stay below a cer-
tain mass scale. A convenient formulation to control low
momenta for nucleons is the heavy baryon formalism, see
e.g. [12]. One arrives at an effective Lagrangian for pion
and nucleon fields suitable for low energy nuclear physics,
which is arranged according to increasing values of the
chiral dimension

∆ = d +
1
2
n − 2 . (1)

Here d is the number of derivatives or Mπ-insertions
and n the number of nucleon fields for each coupling term.
Chiral symmetry enforces that ∆ ≥ 0. Besides coupling
terms among pions and nucleons there occur also coupling
terms among pions themselves and nucleon themselves.

To arrive at nuclear forces old-fashioned time-ordered
perturbation theory has originally been applied [13,14],
which, however, leads to energy-dependent forces. They
are not suitable for applications to nuclear systems with
> 2 nucleons. We apply a method of unitary transfor-
mations [15], where the field theoretical Hamiltonian act-
ing in the Fock space of pions and nucleons is block-
diagonalised such that the space of pure nucleon states
is decoupled from the rest space (which includes pions).
This decoupling and thus the derivation of the effective
nucleonic Hamiltonian can be organised according to the
ratio of generic external nucleonic momenta and the pre-
viously mentioned mass scale [16]. The mass scale is of
the order of the ρ-mass where new physics beyond pion
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Fig. 4. Hierarchy of the nuclear forces

exchanges occurs. The resulting nuclear forces are of two
types: multi-pion exchanges and a sequence of nucleonic
contact forces. To each nuclear force diagram a mass di-
mension can be associated which is given as

ν = −4 + 2N + 2L +
∑

i

Vi∆i , (2)

where N is the number of nucleons entering (or leaving)
the diagram, L is the number of loops, Vi the number of
vertices of type i and ∆i the chiral dimension mentioned
before. Because of the property ∆ ≥ 0, ν can not be nega-
tive and starts for N ≥ 2 at ν = 0. Thus the nuclear forces
can be classified according to increasing values of ν. This
is schematically displayed in Fig. 4.

We see for ν = 0 the one-pion exchange acompanied
by NN contact forces. The contributions with ν = 0 are
usually called the leading order (LO) contributions. ν = 1-
terms do not appear due to parity conservation. Thus the
next-to-leading order (NLO) terms go with ν = 2 and
comprise various types of two-pion exchanges and several
contact forces quadratic in the momenta and Mπ. At ν =
3, the next-to-next-to-leading order (NNLO), there occur
additional two-pion exchanges with higher order vertices,

but no new contact forces. Note that all multi-pion ex-
changes are parameter free in the sense that the constants
at the vertices, called low-energy constants (LEC’s), can
be taken from the analysis of the πN system. The con-
stants going with the NN contact forces, however, have to
be adjusted in the NN system. At NNLO there occur for
the first time nonvanishing three-nucleon forces of three
topologies: a two-pion exchange, a one-pion exchange be-
tween a NN contact interaction and the third nucleon and
a pure three-nucleon contact force. The one strength pa-
rameter of the latter one has to be adjusted in the 3N sys-
tem, whereas the one strength parameter at the NNNNπ
vertex could in principle be determined from pion produc-
tion in the NN system. Since this has not yet been worked
out sufficiently well we will adjust this constant also in the
3N system (see below). Then, at NNNLO, additional two-
and three-pion exchange processes and more NN contact
forces contribute in the NN system. Very interestingly,
at this order, a whole host of new three-nucleon forces
arises, which do not include new 3N contact interactions
and therefore can be expected to provide a very inter-
esting predictive power for systems with A ≥ 3. Finally,
in that order, for the first time four-nucleon forces occur.
The overview displayed in Fig. 4 nicely shows the ordering
scheme that NN forces are stronger than 3N forces and 3N
forces are stronger than 4N forces etc. Of course all that
is restricted to a low momentum regime where the generic
nucleon momenta Q are smaller than the chiral symmetry
breaking scale.

The loop diagrams have to be regularized. In [18,19]
we used an infinite cut-off, which is in that case equivalent
to dimensional regularization, and combined the diverging
terms with the contact forces. As a result at NNLO rather
strong intermediate and short range attractive forces arise,
which lead to a strong cut-off dependence in the D-waves
and to deeply bound spurious NN states in low partial
waves. Though these states lie outside the range of valid-
ity of the low-momentum theory and do not harm the low
energy NN observables, they cause technical difficulties in
A > 2 systems. For instance in the Faddeev–Yakubovsky
scheme NN forces are summed up into NN t-matrix, which
has poles at NN bound state energies. These spurious NN
bound states appearing as additional poles have to be han-
dled with great care which is technically not trivial [18]. In
addition, they also lower the 3N binding energy because of
orthogonality arguments. As a consequence the 3N forces
have to provide more attraction than one is used to have
in the conventional framework of nuclear forces [20]. In
our first approach [18] we avoided that dynamical sce-
nario by lowering artificially the values of the LEC’s c3
and c4 at the Nππ vertices below the strengths found in
the πN system. This leads to NN forces which in [18] and
in the following will be denoted by NNLO* forces and
which no longer support spurious NN bound states. We
refer to [18] for a discussion of that procedure. Now we
introduced a different regularisation scheme [21], which
will be described below and restore the consistency of the
LEC’s c3 and c4 with the πN system.
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Fig. 5. NN phase shifts at NLO and NNLO

As a last step one has to adjust the forces to the low
momentum regime where the theory is valid. We enforce
that by introducing smooth cut off functions in the form

V reg
Λ (p ′, p) = e−p′4/Λ4

V (p ′, p)e−p4/Λ4
(3)

It turns out that

500 MeV ≤ Λ ≤ 600 MeV (4)

is a good choice. The cut-off should be not too small in
order not to cut off the pion exchange physics, and not too
large in order not to enter into the domain of short range
physics, which is not controlled in EFT. One expects [22]
that the dependence will get weaker with increasing order
in ν.

As a first step in the application the LEC’s for the NN
and 3N forces have to be adjusted. At LO and NLO there
are 2 +7 LEC’s going with the NN contact forces. They
are adjusted [23] to the S- and P-wave NN phase shifts and
to ε1 which are known from NN phase shift analysis. The
two LEC’s going with the 3N forces are adjusted to the
3H binding energy and the doublet nd scattering length
2and [19]. Then up to NNLO all parameters are fixed and
the Hamiltonian including NN and 3N forces can be ap-
plied to predict other 3N and A ≥ 4 observables.

In Fig. 5 we display some NN phase shifts at NLO and
NNLO. We see a nice improvement in going to NNLO,
which comes about by additional two-pion exchanges. In
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Fig. 6. nd elastic scattering observables at Elab = 3 MeV

that order no new contact forces arise. Deuteron proper-
ties are also well reproduced [18].

Now we move on to predictions for 3N and 4N observ-
ables. In Figs. 6,7 we show the differential cross section
in elastic nd scattering together with vector and tensor
analysing powers at NLO and NNLO (this still refers to
the choice NNLO*, mentioned above and will be changed
in the near future). We see for both energies a nice im-
provement at NNLO in relation to NLO. The so called low
energy Ay-puzzle [24], however, remains still open at this
order and we expect that only higher order 3N forces and
possibly relativistic corrections will solve that long stand-
ing problem. Altogether these results are very promising.
This is also the case regarding the α-particle binding en-
ergy shown in Table 3. While at NLO there is still a rather
large Λ-dependence it shrinks at NNLO and one ends up
rather close at the experimental value (Please note that
at this level we restricted ourselves to np forces only and
had to correct for that, see [19]). Of course that shrink-
age is also connected to the fact that at NNLO the 3H
binding energy has been adjusted. The strong correlation
between 3H and 4He binding energies, known from inves-
tigations with conventional forces [25,7], enforces that the
4He binding energy can not be far off the experimental
value. There are also interesting and promising results for
the p+d → N +N +N break up process and we refer the
reader to [19].

Table 3. Chiral predictions for the triton- and α-particle bind-
ing energies at NLO and NNLO* compared to the experimental
values, which are corrected for np forces

NLO NNLO “Exp”
3H −7.53 . . . − 8.54 −8.68 −8.68
4He −23.87 . . . − 29.57 −29.51 . . . − 29.98 −29.6
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Fig. 7. nd elastic scattering observables at Elab = 65 MeV
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The last step forward to be reported in this overview
are recent investigations [21] on the spectral function reg-
ularisation (SFR). The two-pion exchange forces can be
written as

V (q) =
2
π

∫ ∞

2Mπ

dµ µ
ρ(µ)

µ2 + q2 , (5)

modulo subtractions. This is obviously a superposition of
Yukawa interactions, where the spectral function ρ(µ) is
known analytically and simply related [17] to the analyt-
ical expressions of the potential. In configuration space it
results

V (r) =
1

2π2r

∫ ∞

2Mπ

dµ µ e−µr ρ(µ) (6)

It is instructive to regard the integrand in (6) as a func-
tion of µ, the mass exchanged between the two nucleons,
and this for different pair distances r. This is shown in
Fig. 8 for the isoscalar central part of the subleading (i.e.
NNLO) two-pion exchange potential. We see at small r-
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Fig. 9. Peripheral NN phase shifts at LO (dotted line), NLO
and NNLO in dimensional regularization (dashed and solid
lines) compared to predictions for SFR (light and dark shaded
bands)

values large µ-components contribute in contrast to large
r’s where only small µ-components contribute substan-
tially. Now the exchange of masses µ larger than say Λ
belong to short range physics parametrised in this effective
field theory approach by contact forces. Thus it is manda-
tory to cut-off the integral over µ. We do it by a sharp cut
off, which introduces another parameter λ, which can be
chosen in a similar range as Λ. This “long-distance” reg-
ularisation cures now the insufficient results achieved in
dimensional regularisation (or infinite cut-off regularisa-
tion) at NNLO and at higher orders. We illustrate that in
Fig. 9 in the case of peripheral NN phase shifts. We see the
results where the loops are evaluated in dimensional reg-
ularisation, deviating drastically from the NN phase shift
values, whereas using that new regularisation scheme one
achieves a nice convergence in going from NLO to NNLO.

This regularization scheme is presently applied also to
NNNLO where additional short range forces allow for a
rather good description of the NN phase shift values up
to about 200–250 MeV nucleon laboratory energy. In that
order also a rich group of 3N forces occur, which is under
investigation.

Summarising, this new effective field theory approach
constrained by chiral symmetry is a systematic way to
generate nuclear forces where NN and 3N forces are consis-
tent. Because of the low-momentum cut-off it also allows
to incorporate in a well converging manner relativistic cor-
rections.

Moreover, since that approach is based on a La-
grangian the coupling of the photon to the pion-nucleon
system is well defined and nucleonic electromagnetic cur-
rent operators can be constructed which are consistent to
nuclear forces, a requirement which is not sufficiently well
taken care of in the conventional approach up to now.
First steps in that direction have already been done [26,
27,28].
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